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a  b  s  t  r  a  c  t

There  is  a large  gap  between  the number  of  discovered  proteins  and  the  number  of  functionally  annotated
ones. Due  to  the  high  cost  of determining  protein  function  by wet-lab  research,  function  prediction  has
become  a major  task  for  computational  biology  and  bioinformatics.  Some  researches  utilize  the  proteins
interaction  information  to  predict  function  for un-annotated  proteins.  In this  paper,  we  propose  a novel
approach  called  “Neighbor  Relativity  Coefficient”  (NRC)  based  on  interaction  network  topology  which
estimates  the  functional  similarity  between  two proteins.  NRC  is calculated  for  each  pair  of proteins  based
on their  graph-based  features  including  distance,  common  neighbors  and  the  number  of  paths  between
ath connectivity
rotein–protein interaction network

them.  In  order  to  ascribe  function  to an  un-annotated  protein,  NRC  estimates  a  weight  for  each  neighbor
to  transfer  its annotation  to  the unknown  protein.  Finally,  the  unknown  protein  will  be  annotated  by  the
top score  transferred  functions.  We  also  investigate  the  effect  of  using  different  coefficients  for  various
types  of functions.  The  proposed  method  has  been  evaluated  on Saccharomyces  cerevisiae  and  Homo
sapiens  interaction  networks.  The  performance  analysis  demonstrates  that  NRC  yields  better  results  in
comparison  with  previous  protein  function  prediction  approaches  that  utilize  interaction  network.
. Introduction

The increasing number of proteins with unknown function
n the post genomic era has opened an important challenge
or computational methods to predict function for un-annotated
roteins. In the past decade, several approaches have been devel-
ped which use protein–protein interaction networks information.
hese approaches can be categorized into two main groups: direct
nnotation schemes and module assisted based schemes (Sharan
t al., 2007). The first group uses protein connections for function
rediction by a general assumption that closer proteins in the net-
ork have more chance to have similar functions. The second group

ries to identify some modular clusters in the network and assigns

unction to un-annotated proteins based on the known functions
n the related cluster. In direct annotation group, Neighborhood-
ounting (Schwikowski et al., 2000) is the simplest approach which
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counts the frequency of functions among direct neighbors of an un-
annotated protein and then, selects the top k frequent functions and
assigns them to the protein. According to Deng et al. (2003),  Ahmed
et al. (2011) and Wong (2011),  the shortcomings of Neighborhood-
counting method are as follows: (a) ignoring the full topology of
the network and considering only direct neighbors; (b) consider-
ing equal weights for all interactions in the network; (c) lack of
significance level for function assignment; and (d) neglecting func-
tion frequency in the entire interaction network. In Hishigaki et al.
(2001), the authors proposed to use Chi-Square distribution to pre-
dict protein functions, based on function density among protein
neighbors and provided a significance level for function assign-
ment. They also proposed to use the n-neighborhood to exploit the
topology of the network for function prediction. However, they did
not consider any difference between the proteins with different
network distances. In Chua et al. (2006),  the authors used first and
second level neighbors of an un-annotated protein and assigned
different weights according to the network topology. This method
also considers reliability of interactions between protein pairs and
function frequency in the entire network and could overcome the

Neighborhood-counting and Chi-Square methods in results.

In the second group, as stated in Sharan et al. (2007),  some of
module assisted based methods (Brun et al., 2003; Milenkovic and
Przulj, 2008) just used the information extracted from network
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http://www.sciencedirect.com/science/journal/14769271
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Table  1
The statistics of Saccharomyces cerevisiae and Homo sapiens interaction networks.

Number of proteins Number of interactions GO terms Cellular component Molecular function Biological process

 500 713 1328
 464 847 2650
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Table 2
The values for tuning parameters of NRC equation (  ̨ and ˇ) which are determined
by  grid search.

Saccharomyces cerevisiae Homo sapiens

˛  ̌  ̨ ˇ

Cellular-component 2 1.5 1.2 0.4

Here, Ux is the set of all paths between u and v with maxi-
mum  length x, and p is a path with length L(p) as a member of Ux.
According to this definition, proteins with more paths and shorter
Yeast 2112 4392 2541
Human 1081 1291 3961

opology; and some others (Hanisch et al., 2002; Ideker et al.,
002; Luscombe et al., 2004; Balazsi et al., 2005; Wachi et al.,
005) used further sources of information such as gene expression
easurements. According to some primary evaluations, the predic-

ion performance of the direct methods is more accurate than the
odule-assisted methods (Sharan et al., 2007). However, it needs

 comprehensive and systematic study to confirm the results.
In this paper, we propose a novel approach named “Neighbor

elativity Coefficient” (NRC) which can be considered as a direct
nnotation scheme, according to the aforementioned categoriza-
ion. NRC is an indicator which determines the influence of each
eighbor for ascribing function to an unknown protein. Our results
how that the performance of this approach is higher than other
tate of the art methods in protein function prediction that utilize
rotein–protein interaction network.

. Materials and methods

.1. The datasets

The Core datasets of the molecular interaction networks of Sac-
haromyces cerevisiae and Homo sapiens (released on 10/27/2011)
ere downloaded from the Database of Interacting Proteins (DIP)1

Xenarios et al., 2000, 2001). We  also used the Gene Ontology (GO)2

escription of proteins functions which was obtained from the
niProt website.3 GO system is a hierarchical set of functions which
ontains three categories: Cellular-component, Molecular-function
nd Biological-process (Ashburner et al., 2000). In this system,
ach protein may  be annotated by several GO terms in each cat-
gory. The functionally un-annotated proteins and the interactions
ith other organisms’ proteins were filtered out from the origi-
al datasets to make them suitable for algorithm assessments. In
he prepared datasets, there were 4392 interactions between 2112
roteins in Yeast network and 1291 interaction between 1081 pro-
eins in Human network. Table 1 shows the statistics of the purified
atasets.

.2. Assessment of proteins function similarity

In order to measure functional similarity between two interac-
ing proteins p1 and p2, we used Eq. (1),  where the Pi Function set
s the set of functions for the ith protein:

unction Similarity = P1 Function set ∩ P2 Function set
P1 Function set ∪ P2 Function set

(1)

.3. Algorithm

We propose a novel approach for assigning function to an
nknown protein based on its neighbor’s functional annotation by
stimating the proteins relativity. The main idea of our approach
s based on the assumption that strongly linked proteins are more

ikely to have common functional properties than those which are
ess connected. NRC determines the weight of each neighbor in
ssigning its function to an un-annotated protein as defined by Eq.

1 http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7.
2 http://www.geneontology.org/.
3 http://www.uniprot.org/.
Molecular-function 1.1 1.2 1.1 0.3
Biological-process 1.1 1.4 1.0 1.1

(2).  In this equation, NRC is calculated for each protein pairs in the
network using some graph-based features including their distance,
their common neighbors and the number of paths between them.
For assigning function to an un-annotated protein, each of its neigh-
bor scores up its functions as candidate functions with regard to its
NRC value. Finally the candidate functions with higher scores will
be assigned to the un-annotated protein.

NRCx(u, v) = Fx(d) ×
(∑

p ∈ Ux

1
L(p)

)
× a × |Nu ∩ Nv| + 1

|Nu| + |Nv| − a × |Nu ∩ Nv| + 1

(2)

In the above equation, u and v are two arbitrary proteins which
have the maximum x-step distance in the interaction network. Fx(d)
is a function of the distance between two  interacting proteins and
is defined by Eq. (3):

Fx(d) =
{

1 if d = 1
1
ˇ

if d > 1
(3)

In which  ̌ is a parameter that varies for three GO categories
(Table 2) due to different reduction rates of function similarity
upon distance in each category (Fig. 2). We  have proposed “pro-
tein path connectivity” as a new measure for network connectivity
which is used in the NRC equation. Protein Path Connectivity makes
use of paths between two  proteins in interaction network and is
calculated as follows:

Proteins Path Connectivity(u, v) =
∑
p ∈ Ux

1
L(p)

(4)
Fig. 1. Calculation of Proteins Path Connectivity for two pairs of nodes in a sample
graph.

http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7
http://www.geneontology.org/
http://www.uniprot.org/
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ig. 2. The relationship between function similarity and proteins distance in the i
nd  Bio Proc are stand for Cellular-component, Molecular-function and Biological-p

ath-lengths are more tightly connected in the interaction network.
ig. 1 shows an example for calculation of this new measure.

Similar to the propositions in Brun et al. (2003) and Chua et al.
2006), we propose another measure for proteins relativity, called
ommon Neighbor Ratio which is defined as follows:

ommon Neighbor Ratio(u, v) = a × |Nu ∩ Nv| + 1
|Nu| + |Nv| − a × |Nu ∩ Nv| + 1

(5)

Here, Nu is a set of proteins containing u and all direct neighbors
f u, and Nv is a set which includes v and all direct neighbors of v. The
arameter  ̨ tunes the effect of the number of common neighbors
nd was determined experimentally by grid search (Table 2).

.4. Assessment of algorithms

The Leave-One-Out procedure was used to compare function
rediction performance of NRC with three well-known methods

ncluding: Neighborhood-counting (Schwikowski et al., 2000), Chi-
quare (Hishigaki et al., 2001) and FS-weight (Chua et al., 2006,
007). The first two methods are basic approaches that show gen-
ral predictability on any dataset. The third method, FS-weight,
s a state-of-the art approach that has been tested on interaction
etworks of different organisms by Chua et al. (2007) and resulted
igher function prediction performance in comparison with other
ethods (Chua and Wong, 2009; Chua et al., 2011). Since NRC uses

oth direct and indirect neighbors’ information for function predic-
ion, analysis on other methods have been executed in two  levels:
n the first level (tagged with #1), only direct neighbors have been
onsidered and in the second level (tagged with #1&2), both direct
nd indirect neighbors were used to predict function by the afore-
entioned methods. Three comparison measures: Precision, Recall

nd F-score values were calculated for different methods using the
ollowing equations:

recision =
∑

p ∈ V Kp∑
p ∈ V mp

(6)

ecall =
∑

p ∈ V Kp∑ (7)

p ∈ V np

 = 2(Precision × Recall)
Precision + Recall

(8)
tion networks of Saccharomyces cerevisiae and Homo sapiens. Cell Comp, Mo Func
s respectively.

where kp is the number of correctly predicted functions for pro-
tein p, mp is the total number of functions predicted for protein p
and np is the number of all known functions of protein p.

3. Results

3.1. The relationship between function similarity and network
distance

The overall relationship between proteins network distances
and their functional similarities were assessed for different GO
function categories and the result is shown in Fig. 2. In interaction
network of S. cerevisiae,  functional similarity decreases strongly by
increasing distance between proteins. However, decreasing ratios
vary among different function types. For example, decreasing rate
of function similarity for Molecular-function is less than other types
of functions in yeast dataset.

Fig. 2 also shows that the Cellular-component similarity of the
direct neighbor proteins is higher than Molecular-function and
Biological-process in both datasets. In Human network, proteins are
more functionally similar to indirect neighbors than direct ones in
Cellular-component and Molecular-function. It might be the con-
sequence of this point that the human interaction network is not as
saturated as yeast interaction network (Hart et al., 2006) and more
direct interactions might be discovered by future researches.

3.2. Function prediction assessment

The ability of NRC method in assigning function to unknown
proteins was  assessed on S. cerevisiae and H.  sapiens networks and
the same evaluation circumstances were implemented for the other
three methods (Schwikowski et al., 2000; Hishigaki et al., 2001;
Chua et al., 2006).

The results show that NRC significantly improves the prediction
results compared with all the other methods in the prediction of
Cellular-component in both networks (Figs. 3A and 4-A). In pre-
dicting Molecular-function, NRC overcomes other methods in the
Human network (Fig. 4B). But, there is no significant difference
between the performance of NRC and FS-weight #1&2 method for

the yeast dataset (Fig. 3B).

In predicting of Biological-process, NRC has no major difference
compared with FS-weight #1&2 in S. cerevisiae dataset (Fig. 3C).
However, both methods have significantly higher performance
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Fig. 3. Analysis of function prediction performance on yeast interaction network by Precision–Recall and F-score plots for three types of functions’: (A) Cellular-component,
(B)  Molecular-function, and (C) Biological-process. The analysis comprise different methods including Neighbor Relativity Coefficient (NRC), FS-weight using only direct
neighbors (FS-weight #1), FS-weight using both direct and indirect (level 2) neighbors (FS-weight #1&2), Neighborhood-counting using direct neighbors (Neighborhood-
c rhood
(

t
h
N

4

t
T

ounting #1), Neighborhood-counting using both level 1 and 2 neighbors (Neighbo
Chi  Square #1&2).

han the other methods. For the human interaction network, NRC
as competing results in comparison with FS-weight #1&2 and
eighborhood-counting #1&2 (Fig. 4C).

. Discussion
In this study, we proposed an approach for protein func-
ion prediction based on protein–protein interaction network.
his method ascribes the functions of neighbor proteins to
-counting #1&2), Chi-Square with n = 1 (Chi Square #1) and Chi-Square with n = 2

un-annotated proteins regarding their graph-based relativity. The
results demonstrate that using NRC as an influencing coefficient
for each neighbor in assigning function to un-annotated proteins
increases the prediction performance. In order to estimate func-
tional relativity of two proteins, NRC combines various topological

aspects of protein interaction network including distance of pro-
teins in the network, common neighbor ratio and the number
of paths between them. Each of these factors represents a dif-
ferent aspect of relation between two proteins in the network.
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Fig. 4. Analysis of function prediction performance on human interaction network by Precision–Recall and F-score plots for three types of functions’: (A) Cellular-component,
(B)  Molecular-function, and (C) Biological-process. The analysis comprise different methods including Neighbor Relativity Coefficient (NRC), FS-weight using only direct
neighbors (FS-weight #1), FS-weight using both direct and indirect (level 2) neighbors (FS-weight #1&2), Neighborhood-counting using direct neighbors (Neighborhood-
c rhood
(

C
a

f
(
t
h
t

ounting #1), Neighborhood-counting using both level 1 and 2 neighbors (Neighbo
Chi  Square #1&2).

ombination of these factors in the NRC equation provides an
ppropriate estimate of functional relativity of two proteins.

The distribution of functional similarity in the network differs
or various GO function types. So, using different tuning parameters

 ̨ and ˇ) for each GO function type is an advantage of NRC over

he other methods. The appropriate performance of NRC on both
uman and yeast interaction networks reveals the generality and
he stability of this method.
-counting #1&2), Chi-Square with n = 1 (Chi Square #1) and Chi-Square with n = 2

For Chi-Square methods (Chi-Square #1 and Chi-Square #1&2),
the weak prediction outcomes may  be the result of network sparse-
ness in this investigation. As claimed in Hishigaki et al. (2001),
the Chi-Square method works better on dense parts of interaction
network.
Except Chi-Square, using level 1 and 2 neighbors simultaneously
increases the prediction performance for all the other methods.
The Neighborhood-counting method, despite of its simplicity, has
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otable performance when uses both level 1 and 2 neighbors. How-
ver, since it does not consider any difference between direct and
ndirect neighbors, it produces lower performance than NRC and
S-weight #1&2 in most cases.

NRC exploits topological information of interaction networks.
his information in conjunction with other complementary sources
f information (such as frequency of each function in the network,
o-occurrence of functions in neighbors, compatibility of functions
hat are assigned to a protein and the effect of interaction type
n annotation transferring from a known protein to an unknown
nteracting protein) may  improve the results. The best combination
f this information for function prediction can be achieved using the
tate-of-the-art data fusion techniques.

. Conclusion

Protein interaction networks contain helpful information for
nderstanding the role of proteins in cells and predicting function
or un-annotated proteins. In this research, we proposed a new
pproach that uses topology of protein–protein interaction net-
ork for assigning function to un-annotated proteins. This method

ombines three topological feature of interaction network to pre-
ict function relativity of each protein pairs. The proposed approach
rovides a general concept of relativity in the networks which can
e used in defining relativity of two nodes in various graph-based
roblems.
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