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ABSTRACT

Spatio-temporal data is increasingly available due to the ubiquity of
sensors of various types and the almost unlimited capacity of data
storage resources. Consequently, a variety of data-analytic appli-
cations have been developed to gain useful insights from the data.
Discovery of the characteristics of driving context, where a context
is a combination of location and time, is a new and challenging
problem in this area. An example of such a characteristic is the pat-
tern of correlation between driving behavior and traffic condition.
This contextual information enables us to validate hypotheses about
driving behavior of an individual. In this paper, we present Drive-
Context, a novel framework to find the characteristics of a context.
DriveContext consists of twomajor components: dSegmentwhich
extracts driving patterns within a trajectory (e.g., a speeding-up),
and dDescribewhich finds the set of potential causes to justify a pat-
tern (e.g., traffic congestion). We build and evaluate DriveContext
components using several spatio-temporal data sources, including a
large-scale trajectory dataset, traffic data, and data on the features of
roads. Our analysis and results show the feasibility of the framework
in identifying meaningful driving patterns, with improvements in
comparison with the state-of-the-art. We also demonstrate how the
framework derives interesting characteristics for different contexts,
through real-world examples.
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1 INTRODUCTION

The amount and availability of spatio-temporal data has drastically
increased thanks to the ubiquity of sensors in various applications
and high-capacity data centers that can store and serve up this
data. Transportation data is an example of spatio-temporal data,
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where the New York taxi cab [7], Porto cab [19], and GeoLife [29]
are some instances of that. Given the availability of these large
transportation data sources, various analysis applications have been
developed to gain insights from this data. Discovery of characteristics
of driving context is a new application area which we introduce in
this paper. A context can be described as combination of location
(e.g., Interstate-901) and time (e.g., weekdays between 3pm to 7pm).
A characteristic for a context can be identified as correlation between
driving behavior and an environmental effect (e.g., traffic congestion).
By having information about different driving contexts, one can
validate hypotheses about behavior of an individual within a context,
and also provide feedback to drivers in order to help them to improve
their skills. The former one is related to usage-based insurance (see
Example 1.1) and the latter one is known as driver coaching [25].
Note that neither of mentioned applications can be appropriately
handled without having the characteristics of driving contexts as a
prior.

In this paper, we address the problem of discovering driving context
by exploring characteristics for a given context, based on behavior
of drivers and using complementary sources of spatio-temporal
data to analyze behavior. We define behavior of a driver in terms
of meaningful driving patterns. Moreover, we try to explore causes
which underlie a specific pattern within a context by conducting
analysis across several spatio-temporal data sources (e.g., traffic
data, data on the features of roads, etc.). This process will shape
our framework to identify the characteristics for a context as we
demonstrate that later in this paper. Figure 1 shows an example of
a trajectory, where red dots show the location of the car for every
second of the trip. The trajectory begins at the bottom center and
continues to the left after a clock-wise turn. Different parts of the
trip can be seen to exhibit different driving patterns, as marked out
by the ovals. For instance, the oval B shows slow-down, ovalC shows
a loop (ramp), oval D is a speeding-up, etc.

In this way, driving patterns are portions of a trajectory where
there is homogeneity of driving behavior. In other words, a driving
pattern is the consistent behavior of a driver within a sub-trajectory.
The cause behind a transition between patterns, hence introducing
a new pattern, can be extrinsic (e.g., an accident, a traffic signal, a
traffic congestion, etc.) or intrinsic (e.g., driver-generated distraction,
personality of the driver, etc.). For example, in Figure 1, a transition
occurred in the middle of highway, where a slow-down is happened
(the oval E). The cause behind this changemay be a traffic congestion.
The focus of this study is on extrinsic causes.

The problem of discovery of driving context, as we formulate
that in this paper, is a complex problem, because we have to deal
with following challenges. First, unlike studies [12, 13, 23] which
collected data using a fully monitored environment (for example,

1Interstates form a network of controlled-access highways which
are part of the National Highway System of the United States (see
https://en.wikipedia.org/wiki/Interstate_Highway_System).
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Figure 1:A sample trajectory with several driving patterns specified

by ovals. Red arrows show the points of transition between patterns.

Each pattern illustrate a homogeneous part of the trajectory and ex-

istence of each pattern is correlated to some causes (e.g., traffic con-

gestion).

with cameras placed inside the car monitoring driver’s every move
and expression) and a small set of drivers and routes, we work on a
large-scale dataset which is the result of collecting data by observing
only externally visible phenomena (e.g., vehicle’s speed) with no
additional intrusive monitoring. In addition, because intrinsic rea-
sons could also be causes of specific pattern transitions [8], and even
if we could comprehensively monitor drivers, routes and vehicles,
relating a pattern to extrinsic causes still remains challenging. Thus,
finding a valid set of patterns and also the exact set of extrinsic
causes that underlie each pattern, which are the bases of deriving
characteristics for a context, are two challenging tasks, worthy of
our study. Example 1.1 illustrates a potential use of our results.

Example 1.1. Regarding usage-based insurance (UBI), an insur-
ance company provides a personalized insurance policy for a cus-
tomer, based on his/her driving history2. For this purpose, the in-
surance company needs to compare the behavior of a driver to a
reference population of drivers in order to find out how “risky” or
“safe” the driver is. Assume Mark is a new customer and his driving
history reveals that his driving behavior, within a context C , shows
20% more hard-braking and hard-acceleration patterns in compare
to a reference population of drivers in the same context. Hence,
Mark appears to show an abnormal behavior, and his driving may
be characterized as risky.

In this paper, we introduce DriveContext, a framework to effi-
ciently discover characteristics of driving contexts. This framework
consists of two major components, dSegment and dDescribe. The
first component, dSegment, applies a behavior-based trajectory seg-
mentation algorithm to find meaningful driving patterns within a
trajectory. Then, dDescribe, the second component of our system,
reveals the extrinsic causes for each driving pattern. We applyDrive-
Context on a real-world dataset of car trajectories to illustrate how
to derive interesting characteristics for different contexts. The main
contributions of this paper may be summarized as follows:
■ We propose a novel trajectory segmentation approach, dSeg-

ment, to find driving patterns based on behavior of drivers.
■ We propose a novel usage of spatio-temporal data sources, in

terms of dDescribe component, to explore causes which make
a driving pattern to happen.

2https://en.wikipedia.org/wiki/Usage-based_insurance

■ We leverage the causality analysis results, conducted for a set of
driving patterns within a context, to explore the characteristics
of that context.

The remainder of this paper is organized as follows: Section 2
introduces the formal problem statement. Section 3 provides the
DriveContext framework and its major components. Next, the
experimental protocol and results are presented in Section 4. We
provide a summary of related work in Section 5. Lastly, we conclude
in Section 6 by summarizing and describing future work.

2 PRELIMINARIES AND PROBLEM

STATEMENT

Assume we are given a transportation database D of the form
⟨ϒ, Γ⟩ where ϒ and Γ are the set of vehicles and trajectories, re-
spectively. Each trajectory γ ∈ Γ is a sequence of |γ | data points
⟨ρ1, ρ2, . . . , ρ |γ |⟩. Each data point ρ is a tuple of the form {t , lat ,
lnд, s, a, h} which captures a vehicle’s status at time t as its lati-
tude and longitude are ⟨lat , lnд⟩, with speed s (km/h), acceleration a
(m/s2), and heading h (degrees). Time is considered to be measured
in seconds. Also, the heading is the direction of the moving vehicle,
described by a degree-value between 0 and 359, where 0 means the
north.

We study the “discovery of driving context” in terms of two sub-
problems: Segmentation and Causality Analysis. A segmentation of
a trajectory γ into n segments, denoted as seдγ , is a set of cutting
indexes seдγ = ⟨I1, I2 . . . , In⟩ that mark the end points of the seg-
ments within a trajectory. Thus, we can define a set of cutting data
points for the segmented trajectory γ as ⟨pI1 ,pI2 . . . ,pIn ⟩. Note that
pIn = ρn (since segments are specified by their last data point, the
last cutting point is the last data point of γ ). All data points between
indexes Ii−1 and Ii , excluding point ρIi−1 and including point ρIi ,
belong to the ith segment. Note that segments are non-overlapping.
Each segment represents a driving pattern and each cutting point
pIi , Ii ∈ seдγ , represents a transition between patterns. Figure 1 shows
several segments (by ovals) and cutting points (by arrows). Consider-
ing the segmentation task as an optimization problem, we define the
optimization goals as (i). maximizing homogeneity within segments,
and (ii). minimizing the number of extracted segments.

The existence of a segment is potentially relevant to extrinsic or
intrinsic causes. In this work, the focus is on extrinsic causes that we
refer to as events . We keep track of events in an event database E
of the form e = ⟨t , lat , lnд, type⟩, where each event e ∈ E occurs in
time t , in a geographical area whose center is ⟨lat , lnд⟩ of type type .
An event can be of any of types including Physical Fact (e.g., traffic
light in a road), Physical-Temporal Event (e.g., traffic congestion),
or Temporal Event (e.g., tornado). Given the set of cutting points
⟨pI1 ,pI2 . . . ,pIn ⟩, identified as result of segmenting trajectory γ , and
the database E of events, the second sub-problem (i.e., causality
analysis) is one of finding if, and to what extent, each cutting point
pIi , 1 ≤ i ≤ n, is related to (or caused by) an event e ∈ E.

3 THE DRIVECONTEXT FRAMEWORK

In this section, we present the novel framework DriveContext to
discover characteristics of different driving contexts. Figure 2 depicts
the overall process of DriveContext where it consists of two major
components, which are dSegment and dDescribe. Details on these
components are provided in the following sub-sections.



Figure 2: The overall process of DriveContext framework which

consists of two components, thedSegmentwhich includes themodel
construction and the segmentation approach, and the dDescribe

which includes the correlation analysis based on extracted patterns

that yields insights in terms of characteristics of contexts.

3.1 dSegment Component

dSegment is a novel approach to wisely partition a trajectory based
on behavior of driver, such that each resulting segment corresponds
to a meaningful driving pattern (e.g., turn, speed-up, etc.). Based
on Figure 2, dSegment consists of two parts, Model Construction
and Segmentation. The first part, “Model Construction”, includes
Dataset Preprocessing and Markov Model Creation . The second part,
“Segmentation”, comprises Trajectory Transformation and Trajectory
Segmentation. We describe each of aforementioned sub-parts as fol-
lows.

3.1.1 Dataset Preprocessing. Regarding the description of the
data model in Section 2, the dataset is a collection of trajectories,
where each trajectory is a sequence of data points. The preprocessing
of dataset consists of the following steps: 1) Removing data points
with missing or noisy (out of range) GPS records, 2) Rounding the
values of Acceleration to be divisible by 0.25, and 3) Using Change
of Heading instead of absolute heading values. Steps 2 and 3 help
to simplify the Markov Model by reducing the possible number of
states, where there will be no significant effect on generalization
of the model. Moreover, the step 3, which is an empirical decision,
helps to reflect the change of heading more clearly. For example, the
difference between 0 and 359 is 1, while we cannot directly derive
such value from absolute heading values.

3.1.2 Markov Model Creation. The goal is to model behavior of
drivers in terms of a finite state machine that provides probability
of transition from one driving state to another one. In this way, we
build a memory-less Markov modelM = {Φ,∆,Π}, where Φ is the
set of states, ∆ is the set of transition between states (along with
the frequency of each transition), and Π is the set of probabilities
of transition between states. We use the following principles to
createM :

• State: We define a state ϕ ∈ Φ as ϕ = ⟨s,a,h⟩, where s , a, and h
are speed, acceleration, and change of heading, respectively.

• Transition: Given a trajectory γ = ⟨ρ1, ρ2, . . . , ρn⟩, for each pair
of consecutive data points ρi and ρi+1 of γ , 1 ≤ i < n, we create
two states ϕi = ⟨si ,ai ,hi ⟩ and ϕi+1 = ⟨si+1,ai+1,hi+1⟩ for ρi
and ρi+1, respectively. We denote a transition from state ϕi to
ϕi+1 as ϕi → ϕi+1. If ∆ doesn’t contain transition ϕi → ϕi+1,
then we add ⟨ϕi → ϕi+1, 1⟩ to ∆. Otherwise, we increase the
frequency of transition ϕi → ϕi+1 by 1.

• Probability of Transition: For a state ϕ, let us assume there is a
δ ⊆ ∆, where δ = {⟨ϕ → ϕ1,n1⟩, . . . , ⟨ϕ → ϕk ,nk ⟩} and ni is
the number of observed transitions from ϕ to ϕi in the training
(modeling) dataset, then we updateΠ by inserting the probability

of each transition ϕ → ϕi , 1 ≤ i ≤ k , using Equation 1:

probϕ→ϕi =
ni∑k
j=1 nj

(1)

By using above principles, we may end up with a sparse Markov
model. For example, we may not observe a transition from ϕ1 =
⟨25,−2, 170⟩ to ϕ2 = ⟨24,−2, 170⟩, although such a transition is
quite likely to happen. In order to deal with this shortcoming of a ba-
sic Markov model and also to avoid the overfitting problem that the
model construction is purely based on the training (modeling) tra-
jectories, we need a further processing step known as Regularization.
To do this, we adapt an existing, intuitive regularization approach
known as Wedding Cake technique [11]. Assume we have a state
ϕ = ⟨s,a,h⟩ which has transition to a set of states Φ̄ = {⟨s1,a1,h1⟩,
⟨s2,a2,h2⟩, . . . , ⟨sn ,an ,hn⟩}. Also, consider values Sth , Ath , and Hth
as thresholds on speed, acceleration, and heading, respectively, to
define regularization intervals. We use Algorithm 1 to regularize the
Markov Model.

Algorithm 1: Wedding Cake Regularization [11]
Input: ϕ , Φ̄, Sth , Ath , Hth

1 for sp = (ϕ .s − Sth ) to (ϕ .s + Sth ) do
2 for ac = (ϕ .a − Ath ) to (ϕ .a + Ath ) do
3 for hd = (ϕ .h − Hth ) to (ϕ .h + Hth ) do
4 ▷ Expanding state ϕ
5 for ϕ′ ∈ Φ̄ do

6 ϕ′′ ← ⟨(ϕ .s + sp), (ϕ .a + ac), (ϕ .h + hd )⟩

7 probϕ′′→ϕ′ + =
probϕ→ϕ′

Euclidean(ϕ,ϕ′′)
8 end

9 ▷ Expanding states in Φ̄

10 for ϕ′ ∈ Φ̄ do

11 ϕ′′ ← ⟨(ϕ′ .s + sp), (ϕ′ .a + ac), (ϕ′ .h + hd )⟩

12 probϕ→ϕ′′ + =
probϕ→ϕ′

Euclidean(ϕ′,ϕ′′)
13 end

14 end

15 end

16 end

Output: Regularized Markov Model

In Algorithm 1, a Euclidean function calculates the Euclidean
distance between two states. Prior to using this distance measure,
we normalize the value of all features to lie between 0 and 1 (i.e., min-
max normalization). The idea of regularization is intuitive, where we
first try to expand the set of states of the basic Markov model (lines
6 and 11), and then update the probability values of the transitions
for the updated states (lines 7 and 12). Expansion of states simply
means creating new states, if they do not exist already, by updating
the feature values of initial state (e.g., ϕ in line 6), using different
thresholds. Moreover, the update of probabilities is about assigning
the probability of transition to newly created states (or update the
probability of existing ones), as a fraction of transition probability
between initial states (e.g., probϕ→ϕ′ in line 7). Also note that we
set aforementioned thresholds during the experiments.

Our goal with the regularization is to reduce the gap between the
state transition probabilities of the training (modeling) trajectories,
and those of the test (evaluation) trajectories. The resulting regu-
larized Markov Model is like a finite state machine which models
behavior of drivers in terms of probability of transitions between
different driving states. For example, by having such a model, we
may infer the speed change from 20 km/h to 50 km/h is not likely to
happen. On the contrary, the change in speed by less than 5 km/h is
quite likely. Figure 3 shows a sample Markov Model which contains
transitions from S1 to four other states in the model.
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Figure 3: A cut of a sample Markov Model. Each state consists of a

triple of Speed (km/h), Acceleration (m2/s ), and Change of Heading.

Probability of transition is shown on each edge.

3.1.3 Trajectory Transformation. Recall that the aim of dSeg-
ment is to provide a segmentation of trajectories based on “behavior
of drivers”. To accomplish this goal and prior to segmentation, we
apply a transformation on input trajectory to a signal in a new space
whichwe call that ProbabilisticMovement Dissimilarity (PMD) space.
Given a trajectory γ = ⟨ρ1, ρ2, . . . , ρn⟩ and a regularized Markov
ModelM = {Φ,∆,Π}, we propose Algorithm 2 to map γ to a signal
Sγ in PMD space. Given consecutive data points ρi , ρi+1 ∈ γ , Algo-
rithm 2 first maps them to states ϕ and ϕ ′, respectively. Then, the
algorithm calculates how unlikely the transition ϕ → ϕ ′ is, given
the model M . In this algorithm, ReturnState returns a state corre-
sponding to input data point ρi , and ReturnProb returns transition
probability from ϕ to ϕ ′. TransitionFrom returns a set of states R for
an input state ϕ, such that {ϕ → r } ∈ ∆, for r ∈ R. Also note that if
ϕ and ϕ ′ represent the same state with zero acceleration, then the
transition is quite likely. In other words, the unlikelihood of this
specific kind of self transition is zero.

Algorithm 2: Trajectory Transformation
Input: γ , M

1 Sγ ← ⟨⟩
2 for i = 1 to n-1 do

3 ϕ ← ReturnState(M, ρi )
4 ϕ′ ← ReturnState(M, ρi+1)
5 v = 0
6 if ϕ , ϕ′ or ϕ .a , 0 then

7 probϕ→ϕ′ = ReturnProb(M, ϕ, ϕ′)
8 R ← T ransit ionFrom(M, ϕ)
9 ▷ R = {r | (ϕ → r ) ∈ ∆}

10 for r ∈ R do

11 probϕ→r = ReturnProb(M, ϕ, r )
12 v += Euclidean(ϕ′, r ) × probϕ→r
13 end

14 v = v
|R |

15 end

16 Sγ ← Append (Sγ , v) ▷ Append v at the end of Sγ
17 end

Output: Sγ ▷ Sγ is transformed version (signal) of γ

Based on Algorithm 2, we map a trajectory into a signal in PMD
space. The signal of a trajectory demonstrates the unlikelihood of
driving behavior for each moment of the trajectory. An unlikeli-
hood score is calculated based on the transition probabilities in the
Markov ModelM , which are demonstration of behavior of drivers
in a population. Lines 7 to 14 in Algorithm 2 measure how far the
observed transition ϕ → ϕ ′ is from the expectation, regarding the
M . Figure 4a depicts a sample trajectory, where its corresponding
signal in PMD space is represented in Figure 4b. The numbers in
rectangular call-outs in Figure 4a show time stamps which can be
mapped to Time axis in Figure 4b. The larger the PMD values, the

more unlikely the behavior of driver is. For instance, a large PMD
value is observable for time stamp 990 in Figure 4b, where the actual
trajectory in Figure 4a shows an unexpected reduction in speed and
probably a lane change. The main takeaway from this sub-section is
that we use a signal in PMD space as representation of behavior of a
driver for a given trajectory.

3.1.4 Trajectory Segmentation. As we intend to identify the ho-
mogeneous parts of a trajectory as segments which are also repre-
sentatives for driving patterns, we leverage an existing approach for
segmentation of electrical signals, which is proposed by Han et al.
[10], to find optimal segments of the signal of a trajectory. This ap-
proach is a dynamic programming algorithm that uses the Maximum
Likelihood principle for segmenting one dimensional signals. Given
an input signal S = ⟨x1,x2, . . . ,xN ⟩, the Maximum Likelihood (ML)
of S can be defined by Equation 2.

ML(θ ; x1, x2, . . . , xN ) = f (x1, x2, . . . , xN |θ ) =
N∏
i=1

f (xi |θ ) (2)

In Equation 2, θ is the set of parameters for a probability density
function (PDF) f , which can be estimated based on data points of
signal S . Similar to [10], we leverage the Gaussian distribution to find
the parameters of the PDF f. Thus, θ = ⟨µ,σ ⟩, where µ and σ are the
sample mean and the standard deviation, respectively.

Recall that the goal of segmenting a trajectoryγ , so its correspond-
ing signal Sγ = ⟨x1,x2, . . . ,xN ⟩, is to find a set of cutting indexes
seдγ = ⟨I1, I2 . . . , In⟩ that maximize the likelihood within segments
and minimize n ≤ N , the best number of existing segments (see
section 2). The recurrence relation to segment signal Sγ is defined
by Euation 3.
SSC(Sγ , i, ν ) = argmax

i+5≤j≤N
(ML(θ ; xi , . . . , x j ) + SSC(Sγ , j + 1, ν − 1)) (3)

In Equation 3, SSC(Sγ , i,ν ) gives the best Segmentation Score (SSC)
for a sub-sequence of signal Sγ which starts at index i , with the goal
being to find ν segments. Also,ML(θ ;xi , . . . ,x j ) gives the maximum
likelihood score for sub-sequence ⟨xi ,xi+1, . . . ,x j ⟩ of Sγ . Note that
we assume the minimum length of a segment to be five3, this is why
j starts from (i + 5). The initial call for Equation 3 is SSC(Sγ , 1,n).
The interested reader may refer to [10] for more details.

The last question in this sub-section is: how do we find the best
number of existing segments within a signal?We use the Minimum
Description Length (MDL) [21] for this purpose, which has been
applied in [10] as well. MDL minimizes the Equation 4 for n =
1, 2, . . . ,K , where n is the number of segments and K is the upper
bound on the number of segments (chosen by the user):

MDL(n) = −ln
n∏
i=1

f (xIi−1+1, xIi−1+2, . . . , xIi , |θi ) +
rn
2
lnN (4)

In Equation 4, θi is the parameter set of the corresponding PDF, rn
is the number of estimated parameters (where n is the number of
segments), and N is the length of the signal. We also set I0 = 0.
Figure 5 shows a part of a segmented signal which is related to the
sample trajectory in Figure 4a. The blue lines in Figure 5 show the
end points of segments (i.e., the cutting points). The best number
of segments which has been found by MDL is 5. An interesting
observation in Figure 5 is homogeneity of behavior of driver within
segments (patterns) and dissimilarity of patterns of behavior between
neighboring segments, which is compatible with our optimization
goals. As an example of behavior-based driving pattern which is
captured by dSegment, we point to the segment which starts at time

3This values is found empirically and it will be described later in Section 4.
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Figure 4: The sample trajectory (a) and corresponding signal (b). Red dots on map show trip points, where the vehicle goes from right to left.

Numbers in rectangular call-outs in (a) show time stamps which can be matched with time axis in (b). The PMD value shows the unlikelihood

of driver’s behavior.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8
6
9

8
7
3

8
7
7

8
8
1

8
8
5

8
8
9

8
9
3

8
9
7

9
0
1

9
0
5

9
0
9

9
1
3

9
1
7

9
2
1

9
2
5

9
2
9

9
3
3

9
3
7

9
4
1

9
4
5

9
4
9

9
5
3

9
5
7

9
6
1

9
6
5

9
6
9

9
7
3

9
7
7

9
8
1

9
8
5

9
8
9

9
9
3

9
9
7

1
0
0
1

1
0
0
5

1
0
0
9

1
0
1
3

1
0
1
7

1
0
2
1

1
0
2
5

1
0
2
9

1
0
3
3

P
M
D

Time

Segment PMD

Figure 5: Segmentation of a sample trajectory by dSegment, where

the best number of segments is found as 5 by MDL.

stamp 986 in Figure 5. Matching it with the actual trip in Figure 4a,
we observe that this segment is related to a driving pattern where
the driver reduces speed and changes the lane. It is likely that these
actions are due to traffic congestion. We describe how to discover
underlying causes behind driving patterns in the next section. Also,
more analysis on correctness of dSegment to extract valid segments
in compare to the state-of-the-art is provided in Section 4.2.

3.2 dDescribe Component

Regarding Figure 2, the dDescribe is the second important compo-
nent of DriveContext which analyzes extracted driving patterns
(segments) to explore the underlying causes that make each pattern
happen. This step helps to identify the characteristics for a given
context as we describe later in Section 4.4. As we discussed in Sec-
tion 2, the existence of a driving pattern is potentially related to
extrinsic or intrinsic causes. In this paper, our focus is to find the
extrinsic causes, so-called events.

Recall that for a given trajectory γ , dSegment returns a set of
cutting points ⟨pI1 ,pI2 . . . ,pIn ⟩. Having a database of events E (Sec-
tion 2) and a cutting point pIi , 1 ≤ i ≤ n, the goal is to find whether
pIi is related to an event e ∈ E or not. If we found thatpIi is related to
e , then this means the segment which starts at cutting index (Ii + 1)
is potentially caused by event e . Note that we accommodate the fact
that a segment (pattern) can be caused by more than one event in
some cases. We define the relevancy relationship between a cutting
point p and an event e based on the type of the event. In this study,
we consider three types of events: physical fact, temporal-physical
event, and temporal event4. Following is how we measure relevancy
for each type of the event:

4There may be additional types of event, but we only consider the ones listed.

• Physical Fact: An example is the presence of a traffic signal. In
such a case, the relevancy can bemeasured as the distance between
the locations of cutting point p and event e . We then say p and
e are correlated if their locations are within a specified distance
threshold.

• Temporal-Physical Event: An example is the existence of a
traffic congestion in a specific place during a time interval. In this
case, we say p and e are correlated if the two following conditions
are satisfied: i . the time of the trajectory γ , where p ∈ γ , overlaps
with the time interval of the event e , and ii . the distance between
locations of p and e are lower than a threshold.

• Temporal Event: An example is having a severe storm within a
specific time interval. In this case, we say p is correlated with e
if the time of trajectory γ , where p ∈ γ , overlaps with the time
interval of event e . The implicit assumption for this case is that
we assume the event e is happened in the same region (city, state,
etc.) as trajectory γ is happened.
In this study, we leverage “physical facts” and “temporal-physical

events” to build the event database E to be used as input of dDe-
scribe component. More detail about creating the event database is
provided in the next section.

4 EVALUATION

In this section, we first describe the datasets which we used in this
study. Then, we evaluate dSegment with respect to a ground-truth
dataset. Next, we apply dSegment on a real-word dataset of car
trajectories and conduct causality analysis using dDescribe. Finally,
we provide examples of the applicability and usefulness of theDrive-
Context framework to demonstrate the implication of practice.

4.1 Dataset

We used four different sets of spatio-temporal data sources to build
and evaluate components of DriveContext. These four datasets
consists of (1) Dataset of Annotated Car Trajectories (DACT), (2)
Nationwide Trajectories, (3) Physical Facts, and (4) Temporal-Physical
Events. We describe each dataset in the following subsections.

4.1.1 Dataset of Annotated Car Trajectories. A dataset of anno-
tated car trajectories (documented in Moosavi et al. [18]), is used to
evaluate dSegment and compare it to other state-of-the-art segmen-
tation approaches. In this dataset, an annotation is a cutting point
(segment border) as described in Section 2. DACT consists of two
sets of annotations for each trajectory, one that assumes flexible con-
straints to identify segment borders, and the other that uses Strict
constraints. The former is called Easy-Aggregation and the latter
Strict-Aggregation. The DACT includes 50 trajectories which cover



about 13.3 hours of driving data. The Easy-Aggregation set contains
1, 372 annotations for 50 trajectories. The Strict-Aggregation set con-
tains 2, 465 annotations for the same set of trajectories. The reader
may refer to [18] for more details.

4.1.2 Nationwide Trajectories. In order to build and to show the
applicability of DriveContext framework, we use a rich, real-world
dataset of trajectories we term the “Nationwide Trajectories”, pro-
vided by a Fortune 100 insurance and financial services company
based in Columbus, Ohio. To our knowledge, Nationwide Trajec-
tories is one of the few large scale datasets with driving data for
personal vehicles (as opposed to taxi cabs or other kinds of com-
mercial transportation vehicles). Further, this data is precise, having
been collected by highly accurate devices connected to the On Board
Diagnostic (OBD-II) port of the vehicles, as well as rich, consisting
of a variety of useful data items such as speed, acceleration, GPS
coordinates, heading, etc. Finally, this new dataset is highly granular,
with data being collected at a consistent sampling rate as 1 second
for all trajectories. The Nationwide Trajectories data was collected
between July 2011 and January 2014 from 103 drivers, and contains
83,406 trajectories and covering about 20,689 hours of driving data.

We divided the Nationwide Trajectories into two sets: modeling
and evaluation. We use the former to build the dSegmentmodel, and
the latter to evaluate the dDescribe and also to show the application
of DriveContext framework as an end-to-end solution. In order
to build the evaluation set, we first sampled all the trajectories for 5
popular routes in the city (i.e., Columbus Ohio). Then, for each driver
in the sampled data, we randomly chose 40% of their trajectories to
be used in the evaluation set. Thus, the modeling set contains 81,895
trajectories (20,073 hours of driving), produced by 103 drivers, and
the evaluation set contains 1,421 trajectories (616 hours of driving),
produced by 48 drivers. Also, it is worth mentioning that for each of
five common routes in the evaluation set, we have the same start and
end points (on map) for trajectories in evaluation set. More details
about the evaluation set is summarized in Table 2.

4.1.3 Physical Facts. Physical facts were drawn from two differ-
ent sources of data, as follows:
i. Open Street Map (OSM)5: We used OSM as a publicly available

source of annotations for different places all around the world.
We only used a subset of the available annotations, specifically
those related to physical facts, such as exit/merge, ramp, bridge,
etc.

ii. Hand-Curated Annotations (HCA): Since OSM cannot be con-
sidered as a comprehensive source of annotations, we manually
annotated routes in the evaluation set by using Google Street View
and created a set of hand-curated annotations. Examples of an-
notations in this set include sharp-turn , smooth-turn, exit/merge,
intersection, etc.

The set of physical facts contains 1,825 annotations from OSM and
95 HCA.

4.1.4 Temporal-Physical Events. One of the best examples of a
temporal-physical event is traffic congestion which may be found
in traffic congestion reports. However, since there is no publicly
available historical sources of traffic congestion report which could
be matched to our dataset, we used two different APIs, specifically,
Bing Traffic API 6 and Map Quest Traffic API 7, to collect real-time
traffic reports. A summary of current dataset of congestion reports
which covers the data for a period of one year, from February 2016
5www.openstreetmap.org
6https://msdn.microsoft.com/en-us/library/hh441725.aspx
7https://developer.mapquest.com/products/traffic

to February 2017, for the routes in the evaluation set is provided
in Table 1. We present more details about how we use this traffic
congestion data for causality analysis in Section 4.3.2.

Table 1: Summary of Congestion Report Dataset, collected using

Bing and MapQuest APIs from Feb 2016 to Feb 2017.

Route #Bing congestion #MapQuest congestion

Interstate-70 477 112
Interstate-71 401 1,369
Interstate-270 290 800
Interstate-670 365 1,189
315 Freeway 155 1,025

4.2 dSegment Evaluation

As shown in Figure 2, we first use the modeling set of Nationwide
Trajectories to create the Markov model, setting Sth , Ath , and Hth
in Algorithm 1 to 3, 0.5, and 6, respectively. The regularized Markov
model consists of 47,495 states and about 5.8 million transitions
between states. In order to evaluate our segmentation approach, we
use the DACT annotation sets [18]. For comparison purposes, we
use following four baselines:
• Stable Criteria: This approach is an alternative to dSegment,

where a set of spatio-temporal heuristics are used for segmenta-
tion. A example heuristic is themaximum amount of the change of
an input feature (e.g., speed) that can be allowed within a segment
[1, 4].

• Point of Change Detection: As we transform a trajectory to a
time series (PMD signal), instead of using the dynamic program-
ming approach, one can use a point of change detection solution.
Here we use a state-of-the-art approach proposed by Liu et al.
[14] to first obtain the change score for each point of time series.
Then, as authors described in their paper, we empirically find a
threshold on the change score to find peak points, which then
define our segment borders (or cutting points).

• Equal Length: In this approach, we first assume all trajectories
have the same number of segments, say η, and then we divide
a trajectory to η equal size segments. Later in this section we
describe how to find η.

• Random: This approach is similar to the “Equal Length” approach,
except we find segment borders at random, where the goal is to
end up with η segments.
In order to find the upper bound on the number of existing seg-

ments, i.e., K (see section 3.1), we set K = N
5 , where N is the length

of trajectory. The minimum length of a segment is assumed to be
5, which is also compatible with our finding in [18]. Sine we have
two sets of annotations for trajectories in DACT, we evaluate and
compare our approach based on both sets. Also, we use Precision
and Recall as evaluation metrics. Given a trajectory t with annota-
tions Antt = ⟨a1,a2, . . . ,an⟩, if algorithm Alд finds cutting points
CPAlд = ⟨p1,p2, . . . ,pm⟩ for t , then we use Equations 5 and 6 to
define precision and recall, respectively.

Precision =
Antt ∩ CPAlд

m
(5)

Recall =
Antt ∩ CPAlд

n
(6)

We obtain the intersection between Antt and CPAlд as follows: to
find a match for pi ∈ CPAlд , we calculate its Haversine8 distance to
all available annotations in Antt . If we find a pair (pi ,aj ), aj ∈ Antt
8https://en.wikipedia.org/wiki/Haversine_formula
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Figure 6: Comparing different segmentation approaches based on DACT annotations (a) and (b), and frequency of extracted segments (c).

Table 2: Summary of evaluation set and segmentation outcome.

Route

Route

Length

Number of

Trajectories

Avg. Trajectory

Length (secs)

Avg. Number

of Segments

Interstate-70 6.7 km 535 333 4
Interstate-71 13.8 km 438 546 5
Interstate-270 12.3 km 195 444 3.3
Interstate-670 7.0 km 131 359 4.2
315 Freeway 14.6 km 120 703 8.9

for 1 ≤ j ≤ n, such that their Haversine distance is lower than a pre-
defined threshold, then we say there is a match for pi . Once that we
found such aj , we no longer use that to match other cutting points
inCPAlд . We use values in set {0, 25, 50, 75, 100, 150, 200, 250} as dis-
tance thresholds, where the measure ismeters . Taking the aforemen-
tioned into account, Figures 6a and 6b show the comparison between
different segmentation approaches based on two different sets of an-
notations in DACT, when varying the distance threshold. Note that
we report the results of dSegment by Dynamic Programming-Org
and Dynamic Programming-Reg. The former refers to the case where
we use the original Markov Model for segmentation, without regu-
larization, while the latter refers to the regularized Markov Model.
For Equal Length and Random approaches, we use η = 30 based on
Easy-Aggregation and η = 50 based on Strict-Aggregation annota-
tion sets. This numbers are set based on average number of segments
in a trajectory, as reported in [18]. Figures 6a and 6b show that dSeg-
ment outperforms the other baselines by reasonable margins, based
on both ground truth datasets. Moreover, using the original Markov
Model leads to higher precision for prediction of segment borders,
however, the regularized graph can improve the recall by loosing
some precision points. This shows the regularization helps to gener-
alize the model. Note that the choice of maximum distance threshold
(i.e., 250 m) is based on the observation that precision and recall are
not significantly changed by using larger thresholds. Also, given the
average length of routes in evaluation set which is about 10 km (see
Table 2), and the average number of segments for a trajectory based
on DACT datasets which is about 40 [18]9, we have 10km

40 = 250m.
Thus, using larger thresholds may invalidate the evaluation results,

Figure 6c depicts the frequency of extracted segments found by
the different approaches. As one can see, dSegment and the point-
of-change-detection baseline tend to extract less segments, while
stable-criteria extracts many more. This can justify the difference
between the recall values of different approaches in Figures 6a and
6b. Note that a solution which maximizes the precision is preferred,

9We have the average number of trajectories for easy and strict sets as 30 and 50,
respectively.

because we need valid segments to conduct a precise causality analy-
sis to confidently derive the characteristics for a context. In Figure 6c,
DACT-Easy and DACT-Strict show the number of annotations (seg-
ments) in ground truth sets. We omitted the values for Equal-Length
and Random baselines as the number of extracted segments by these
two approaches depends on the choice of η.

An important observation from Figures 6a and 6b is the linear
relationship between precision and recall, which can be justified by
the formulation of these two metrics, in that they have the same
numerator but different denominators (Equations 5 and 6). The de-
nominator for precision is the number of extracted segments (m), and
for recall is the number of specified segment borders in the ground-
truth set (n). As shown in Figure 6c, one can compare these numbers
for different cases to obtain the slope of precision-recall lines. For
instance, for the case of DynamicProgramming-Org and DACT-Easy
as ground-truth set, we have n/m = 1.95, which is very close to the
slope of corresponding line in Figure 6a, which is obtained as 1.94
by Linear Regression analysis.

4.3 dDescribe Evaluation

4.3.1 Context. As it is described earlier in the paper, we define
the context as combination of location (e.g., Interstate-270, from inter-
section Interstate-70 to intersection US-33) and time (e.g., weekdays
between 3pm to 7pm). We show the list of routes in Table 2. For time,
we use two granularity levels: i . Type of Day, and ii . Time of the Day.
The first level containsWeekday (WD) andWeekend (WE), and the
second level contains five time intervals including: P1: from 6am to
9:59am, P2: from 10am to 2:59pm, P3: from 3pm to 6:59pm, P4: from
7pm to 9:59pm, and P5: from 10pm to 5:59am. To find the appropriate
time intervals, we used the one-year traffic congestion reports by
Map Quest for the city of Columbus (Section 4.1.4). As shown in Fig-
ure 7, one can see how traffic condition (i.e., congestion frequency)
is changing during the different parts of the day. Regarding such
change in traffic condition, we derived aforementioned intervals.

4.3.2 Causality Analysis. After showing the applicability of dSeg-
ment (see Section 4.2), we apply it on our evaluation set. Table 2
provides some statistics about the evaluation set and also reports
the average number of extracted segments for each route in the
evaluation set. In summary, dSegment extracted 6,674 segments
from trajectories in the evaluation set. Next, we present the result of
applying dDescribe on the extracted segments to discover proper-
ties for each context. As it is described previously, we use physical
facts, from OSM and HCA, and temporal-physical events, from traf-
fic congestion reports, to create the event database E. We conduct
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for one year (fromFeb 2016 to Feb 2017), based on theMapQuest Traffic reports.

One may observe how traffic condition is changing during different parts of a

day. Regarding such changes, we can divide a day to different intervals.

the causality analysis by introducing a new measure Correlation
which we define it as follows: suppose that for a set of trajectories
Γ = {γ1,γ2, . . . ,γM }, which happened in context C , we found a se-
quence of cutting points CPi = ⟨pi1 ,pi2 , . . . ⟩ for each γi ∈ Γ, as
result of segmentation process (Section 3.1). Then, given an event
database E, we use Equation 7 to obtain the correlation for context
C . In this equation, the CheckRelevancy returns 1 or 0. Later in this
section we provide more details about this function with respect to
the type of event.

Correlation(C, E) =

i=M∑
i=1

∑
p∈CPi

CheckRelevancy(p, E)

i=M∑
i=1
|CPi |

(7)

For causality analysis, we define three different tasks based on
the source of event data, as we present them next.

Event Data as Physical Facts. First, we use physical facts to
build the event database E and then conduct the causality analysis.
For this case, we define the CheckRelevancy function in Equation 7
as calculating the Haversine distance between a cutting point p and
a physical event e ∈ E, and then checking if their distance is lower
than a pre-specified threshold th. We empirically set th = 200m, and
it also takes the length of the route of each context into account. In
this way, Figure 8a shows the correlation between cutting points
(i.e., the extracted segments) of different contexts with physical facts.
Note that correalation analysis is only done for those contexts for
which we have enough data. Our observation is that on average,
about 76.5% of the driving patterns (segments) are correlated with
the physical properties of routes. That said, different contexts may
show different patterns of correlation, depending on the properties
of each context.

Event Data as Temporal-Physical Events. The second analysis
is to use the temporal-physical events to build the database E and
conduct causality analysis. The challenging part here is to define
the CheckRelevancy function in Equation 7. To do this, we propose
a solution as follows which consists of two steps.
• Step 1: Heuristic to find potential congestion evidences. Given a

trajectory T , we try to find sub-trajectories of minimum length 5,
where the speed of all points in such sub-trajectories is less than
55 kmh. We consider such sub-trajectories as showing potential
evidence of congestion. The minimum length 5 is given from [18],
and the speed 55 kmh is the average congestion speed in the traffic
congestion dataset (Section 4.1.4).

• Step 2: Finalize the decision about potential evidences. After find-
ing potential evidence C of congestion, we scan through our traffic
congestion dataset (Section 4.1.4) to see if there are at least 12
evidences which happened in the neighborhood of location of C,
within the same day of the week and hour of the day (e.g., Tuesday
4pm). Theminimumnumber 12 is chosen to reflect the observation
of one report per month for a potential congestion spot. Also, in
order to define the neighborhood, we use a 200 meters threshold
and calculate distance using the Haversine metric.

Following above guidelines, we identified 465 traffic congestion
sub-trajectories within 1,421 trajectories of evaluation set. Now, the
rest is straightforward: we need to find the correlation between iden-
tified congestion evidences with cutting points. For a cutting point
p of trajectory T , if p is in the neighborhood (i.e., th = 200m) of at
least one of traffic congestion evidences of T (if there is any), then
CheckRelevancy returns 1, otherwise, it returns 0. Taking aforemen-
tioned, Figure 8b illustrates the correlation analysis results between
driving patterns and temporal-physical events. On average, about
10.5% of driving patterns were correlated with traffic congestion.

Event Data as Union of Fact and Events. Finally, we consider
both physical facts and temporal-physical events to build the event
database E. Given a cutting pointp of trajectoryT , in order to find if it
is correlated with an event e ∈ E by using functionCheckRelevancy,
we use either of approaches described previously, with respect to
the type of the event. Figure 8c demonstrates the correlation of
driving patternswith the set of all existing events, where, in summary
78.1% of segments are correlated with at least one of the event types.
Moreover, by comparing Figures 8b and 8c, one can see that both
analyses lead to almost the same patterns of correlation. This shows
a significant number of segments are correlated with both sources
of events.

4.4 Deriving Characteristics of Context

To this point, we have shown the applicability of dSegment, and
also how to conduct the causality analysis in terms of dDescribe.
Now, we show how one can use these two components to derive the
characteristics for a context. We also describe other applications of
the framework.

4.4.1 First-Order Insights. The results of causality analysis pro-
vides the strongest signal from which to derive the characteristics
for a context. As an example, Figure 8a shows that one can expect
to see about 82% correlation between driving patterns and physi-
cal properties of routes during weekdays, between 3pm to 7pm for
Interstate-70. Another example is the effect of traffic on driving pat-
terns on the context of 315-Freeway, during weekdays between 3pm
to 7pm (Figure 8b).

4.4.2 Second-Order Insights. Besides the direct usage of dDe-
scribe results, one can further analyze the results to identify second-
order insights about a context. As an example, based on Figure 8c,
one can see the correlation ratio for Interstate-270 during week-
days between 3pm to 7pm (WD-P3) is significantly lower than other
contexts. Also, about 83% of evaluation data set fall into the cate-
gory of WD-P3. Such lower correlation for a specific route, may be
interpretable with some other events (facts), rather than what we
have used in dDescribe. To understand what these events may be,
we examined the available Annual Average Daily Traffic (AADT)
reports which are provided by Department Of Transportation (DOT)
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Figure 8: Correlation of extracted driving patterns (segments) with (a) Physical Facts, provided by Open Street Map (OSM) and Hand-Curated

Annotations (HCA), (b) Temporal-Physical Events, provided by Bing and MapQuest, and (c) All Facts and Events. WD and WE are stand for

weekday and weekend, respectively. P1, P2, P3, P4, and P5 are different time intervals. We show correlation for those contexts which we have

enough data for them.

for Columbus Ohio10. Based on these reports for 2010 and 2014 (the
most recent ones), as demonstrated by Table 3, we observed that
the proportion of trucks that use Interstate-270 for transportation is
significantly larger than other routes in the evaluation set 11. Thus,
the presence of trucks may be a potential reason for the difference
in the correlation of segments in this context. Such a finding can be
considered as a second order insight that is not directly derivable
from the causality analysis results.

4.4.3 Other Applications of the Framework. DriveContext may
also be used as an analysis tool for usage-based insurance purposes.
As an example, for a given context c , the DriveContext may find
driving patterns are on average 55% correlated with physical prop-
erties of the route. An insurance company may use such contextual
information to study the behavior of an individual driver in order
to evaluate how risky or safe he/she is, regarding the characteris-
tics of context c (see Example 1.1). The resulting insights from our
framework may also be used for driver coaching, which recommends
further training to those drivers whose driving behavior in a context
is not compatible with the properties of that context. Finally, by
learning the characteristics for different contexts, our framework
may be able to discover valuable insights about similarities and dif-
ferences in driving habits for different types of the roads, different
cities, regions, etc.

Table 3: Annual Average Daily Traffic (AADT) volume estimation

for 2010 and 2014 for Franklin county of Columbus Ohio.

Route I-70 I-71 I-270 I-670 315 Fwy

Truck Load (2010) 11.5% 9.7% 13.5% 5.3% 4.3%
Truck Load (2014) 9.4% 8.9% 11.4% 4.9% 3.7%

Route Length (miles) 7.5 11.1 10.5 7.7 11.2
#Vehicles (millions) 1.1 1.7 1.0 1.2 1.2

5 RELATEDWORK

To the best of our knowledge, no previous research has proposed a
similar framework for discovery of driving context. However, our
work does relate to the research of a number of others, specifically
research in trajectory segmentation (as used in dSegment), and mak-
ing sense of trajectories (as discussed in dDescribe). Also, our work
is related to driving pattern discovery. A review of related work is
presented next.
10http://www.dot.state.oh.us/Divisions/Planning/TechServ/traffic/Pages/Traffic-Count-Reports-and-
Maps.aspx
11Note that here we report the DOT data for the exact routes in the evaluation dataset, not the entire
Interstate-270 for example.

5.1 Trajectory Segmentation

The task of segmentation has been addressed in the literature in sev-
eral studies such as [1, 3–5]. In [4], a greedy segmentation algorithm
exploits a set of monotonic spatio-temporal criteria (e.g., defining
relative thresholds for some feature values) on features like speed,
heading, etc. Alewijnse et al. extended this previous work to both
monotonic and non-monotonic criteria [1]. However, criteria-based
methods need human input for tuning parameters. Moreover, they
are context-agnostic in the sense that they only consider the input
trajectory and not the whole dataset. Therefore, the optimization
process is a local one, where we propose a global optimization for
segmentation. Similar to dSegment, where we propose a context-
aware approach by building a Markov Model, Alewijnse et al. [2]
presents a solution which builds a Brownian Bridge model and uses a
dynamic programming approach to capture the best set of segments
of animal movements. While dSegment bears some similarities with
[2], it exploits a normal distribution model instead, which we find
that more suitable for car transportation data. Transforming tra-
jectory prior to segmentation is also previously discussed by [20],
however, their transformation is a local approach, based on compar-
ing line segments of input trajectory. Instead, we perform a global,
likelihood-based transformation to provide a segmentation where
the extracted segments represent meaningful driving patterns. Es-
sentially, dSegment is a global optimization-based segmentation
approach that builds up a model on the entire dataset. Note also that
there is no need for human intervention in dSegment as in [1, 4].

5.2 Making Sense of Trajectories

Similar to dDescribe, there are some other approaches which try
to make sense of driving data and to explore insights encapsulated
in trajectories. Among these approaches, we can point to discov-
ery of transportation mode [26], map matching [9, 16], points of
interest (POI) discovery [15, 17], and providing descriptive summary
for trajectories [27]. Besides, Wu et al. [28] recently proposed to
predict traffic based on some external data sources including POI
data, collision data, weather data, and geo-tagged tweet data. This
is similar to our analysis in terms of dDescribe, where we try to
find correlation between driving patterns and traffic congestions
and physical properties of routes. The latter one is, in some sense,
similar to POI. However, we pursue a different goal which is the
identification of characteristics of a context.

5.3 Driving Pattern Discovery

Discovery of driving patterns (e.g., make turn, change/keep lane,
etc.) has been prominently studied in the literature [6, 22, 23]. In [12],



a fully monitored test environment is elaborated where a small set
of drivers are provided with instructions in order to measure several
feature values. Then, a Hidden Markov Model (HMM) is applied to
predict specific driving patterns. Driver eye movement is analyzed
in [13] as an additional feature to predict driving patterns. However,
all these works exploit a fully monitored context, which is costly
and nearly infeasible on large-scale or to be used for Usage-Based
Insurance. On the other hand, some computational based approaches
proposed in the literature, like [24], which proposes a time-series
matching solution to discover recurring driving patterns. While the
application of this approach on large-scale data is straight-forward,
there is no guarantee to find meaningful patterns. In the contrary,
DriveContext is developed based on externally observable features
which are rather easy to collect. Hence, our framework is applicable
on large-scale. Also, in comparison to related work, more chances
of finding meaningful patterns are available.

6 CONCLUSION AND FUTUREWORK

In this paper, we present the DriveContext framework as a so-
lution for deriving new characteristics of a context by extracting
meaningful driving patterns (dSegment), and then analyzing the
extracted patterns (dDescribe) to derive insights. Our proposed seg-
mentation approach, to our knowledge, is the first behavior-based
solution which takes the behavior of a driver into consideration.
Moreover, the dDescribe is also a novel solution to conduct analy-
sis across a set of spatio-temporal data sources to find underlying
causes for driving patterns. Our analysis show how the dSegment
is comparable with the state-of-the-art to find meaningful driving
patterns. In addition, the results of dDescribe show the ability of
framework for interpretation of driving patterns which lead to new
insights. The current framework can be utilized for applications like
usage-based insurance, driver coaching, urban planning, etc. There
are multiple lines of research to extend the current study. Regarding
the dSegment, we plan to improve this component by augmenting
its recall to extract more meaningful driving patterns. Besides, lever-
aging further external sources of spatio-temporal data to be used
in dDescribe (e.g., twitter event data, weather data, and points of
interest), seems to be a straightforward extension for this component.
Moreover, exploring sequences of meaningful driving patterns by
sequence mining approaches is another promising extension toward
discovery of more useful characteristics for a given context.
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